
Supplementary material for “ProtTest 3: fast

selection of best-fit models of protein evolution”

Diego Darriba, Guillermo L. Taboada, Ramón Doallo, David Posada

February 9, 2011

Abstract

Summary:

This appendix deals with some technical issues that were not specified in
the application note for ProtTest 3: how the hybrid version of ProtTest 3
works and how the workload balancing is performed.

Availability:

ProtTest 3 source code and binaries are freely available under GNU li-
cense for download from http://darwin.uvigo.es/software/prottest3,
linked to a Mercurial repository at Bitbucket (https://bitbucket.org/).

1 Hybrid Computation

The scalability of ProtTest 3 using either shared or distributed memory is limited
by the replacement models with the highest computational load, usually the
“+I+G” models, which could take up to 90% of the overall runtime. In these
cases, the runtime was determined by the longest optimization, resulting in poor
speedups. Moreover, the higher the number of cores, the higher the workload
imbalance due to runtime differences. In fact, ProtTest 3 usually could take
advantage of up to 50 cores, approximately. This important limitation prompted
us to develop a hybrid (shared/distributed memory) approach, in which we
reduced the overhead of the model optimizations using a thread-based executor
within the distributed memory implementation.

We parallelized the basic task –ML optimization– to get rid of the limitation
of using a single core per model. Thus, we modified PhyML (Guindon and
Gascuel, 2003) to produce a thread-based version, using OpenMP (Dagum and
Menon, 1998). In this way, the models with the highest computational load
could run in parallel, significantly reducing the total runtime. However, this
strategy is only possible when memory is shared, like in a cluster node, being
limited by the number of available cores per system. Our solution (see Fig. 1)

1

was to implement a message-passing based distribution of the tasks across a
distributed memory machine, using MPJ Express (Shafi et al., 2009). This way,
it is possible to take advantage of multi-core clusters through the execution of
a thread-based model optimization process together with the message-passing
implementation of ProtTest-HPC. This two-level parallelism resulted in a much
more efficient exploitation of the available computational resources.

Figure 1: ProtTest 3 hybrid strategy, where two threads are run per external
ML optimizer (PhyML) process.

2 Scheduling and Load Balancing

2.1 High Level Scheduling

The load balancing of the model selection task is not trivial, due to the uncertain
and highly variable execution times of the model optimizations. Even the use
of a dynamic task queue could not be the optimal solution in many cases.

ProtTest 3 attempts to balance the workload in two steps. At first, the work-
load of each single model optimization is estimated. Since the distribution is
performed at a task level (i.e, the 120 models to optimize are distributed among
processors), the accuracy of this estimate is essential in order to achieve the op-
timal performance. ProtTest 3 includes an extensible hierarchy of heuristics to
perform this task. For example, the default heuristic uses the model parameters
to estimate its relative weight compared to every other model.

The next step is to distribute the set of models among the computational
resources, once they are sorted by their computational workload (the relative
workload estimation is a good metric for this task). The best strategy is to
use a dynamic scheduling of the set of tasks. ProtTest 3 implements this using
a Java thread pool in shared memory architectures, and a similar approach
in distributed memory. In this case, a distributor thread works as the model
distributor and dynamic scheduler. The process starts sending a single model
for optimization to each process, and every time a process returns the optimized
model to the scheduler, it sends the next model from the sorted queue.

2

2.2 Hybrid Scheduling

In the hybrid-memory version of ProtTest, the number of shared memory threads
is also taken into account to make the distribution among nodes. At execution
time, the number of available processors cores per ProtTest 3 process is given.
This implies a dependency between the logical distribution of tasks and the
physical mapping of the processes (i.e., thread affinity). However, it results into
the best parallel efficiency of ProtTest 3.

The scheduler calculates the number of threads that each model optimization
should use to get the best overall performance, taking the number and complex-
ity of candidate models and the number of threads per process as parameters.

Figure 2 shows the parallel performance of our OpenMP parallel version of
PhyML. PhyML gets an almost linear speedup using up to 4 threads, slightly
depending on the input data for a higher number of threads. With this infor-
mation, ProtTest 3 can aims for the best combination between process-level and
thread-level parallelism to attain the best possible performance.

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 24 32

S
p

ee
d

u
p

Threads

PhyML OpenMP Superdome benchmark

10K
20K
100K
TF

Figure 2: PhyML parallel performance on an HP Superdome system

3 Fault Tolerance

ProtTest 3 can require long execution times and involve a significant number
of computing resources. For this reason we also implemented fault tolerance
support. Every intermediate running status of the application is held in a seri-
alizable Java object, subject to its storage (checkpoint) in a snapshot file by the
centralized checkpoint manager (CPManager) once it has been notified (through
a custom Observer pattern) that a task has been completed and the ProtTest
3 status has been validated (Fig. 3). CPManager is also in charge of restoring

3

ProtTest 3 up to the last consistent saved status after a failed execution. This
checkpointing system works at a high level, so the application status is verified
every time a model optimization is complete.

The overhead of the fault tolerance support is almost negligible compared
to the global run times (< 0.1%), so it is enabled by default. Furthermore, it
is fully transparent to the user. Every time the application starts, CPManager
automatically looks up for consistent snapshot files in the snapshot directory
and relaunches any previously failed execution.

Figure 3: ProtTest 3 fault tolerance subsystem.

References

Dagum, L. and Menon, R. (1998). OpenMP: An industry-standard API for shared-memory pro-

gramming. IEEE Computational Science and Engineering, 5(1), 46–55.

Guindon, S. and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large

phylogenies by maximum likelihood. Syst Biol, 52(5), 696–704.

Shafi, A., Carpenter, B., and Baker, M. (2009). Nested parallelism for multi-core HPC systems

using Java. J Parallel Distr Com, 69(6), 532–545.

4

